S=-16t^2+300

Simple and best practice solution for S=-16t^2+300 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for S=-16t^2+300 equation:



=-16S^2+300
We move all terms to the left:
-(-16S^2+300)=0
We get rid of parentheses
16S^2-300=0
a = 16; b = 0; c = -300;
Δ = b2-4ac
Δ = 02-4·16·(-300)
Δ = 19200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19200}=\sqrt{6400*3}=\sqrt{6400}*\sqrt{3}=80\sqrt{3}$
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{3}}{2*16}=\frac{0-80\sqrt{3}}{32} =-\frac{80\sqrt{3}}{32} =-\frac{5\sqrt{3}}{2} $
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{3}}{2*16}=\frac{0+80\sqrt{3}}{32} =\frac{80\sqrt{3}}{32} =\frac{5\sqrt{3}}{2} $

See similar equations:

| 52p+101=180 | | 180=52p+101 | | 180=7x+2x | | 9x^2+10x-4=0 | | b+15=27 | | 180=52u+50u | | 1/8(16x−24)=11 | | 180=52u+50 | | 180=5p+100 | | 180=16a+14a | | -3x=+126x | | 0.10x+0.15(50-x)=6 | | 180=6a+114 | | 8-6(5x-3)=-56 | | 0.3x=800 | | (2x-3)/3=(6x+2)/4 | | 6(2x+7)-8=2(3x-1)+12 | | (3x+8)°=(6x-22)° | | 4(x-5)=3(2x-1) | | 180=-13w+147 | | x19= | | 180=3b+123 | | 3x-12=-55 | | 4x-5=3x- | | 180=130+5z | | 4x+7x-4=29 | | 7m-13=2m+12 | | 180=2b+94 | | 180=110+14w | | 9q+7=61 | | 180=39+72+14w | | 14w=71+39 |

Equations solver categories